The maximum principle is one of the most important properties of solutions of partial differential equations. Its numerical analog, the discrete maximum principle (DMP), is one of the most difficult properties to achieve in numerical methods, especially when the computational mesh is distorted to adapt and conform to the physical domain or the problem coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to numerical instabilities such as oscillations and to unphysical solutions such as heat flow from a cold material to a hot one. In this work, we investigate sufficient conditions to ensure the monotonicity of the mimetic finite difference (MFD) method on two- and three-dimensional meshes. These conditions result in a set of general inequalities for the elements of the mass matrix of every mesh element. Efficient solutions are devised for meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally refined elements as those used in the AMR methodology. On simplicial meshes, it turns out that the MFD method coincides with the mixed-hybrid finite element methods based on the low-order Raviart-Thomas vector space. Thus, in this case we recover the well-established conventional angle conditions of such approximations. Instead, in the other cases a suitable design of the MFD method allows us to formulate a monotone discretization for which the existence of a DMP can be theoretically proved. Moreover, on meshes of parallelograms we establish a connection with a similar monotonicity condition proposed for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm the effectiveness of the considered monotonicity conditions.

Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems

G Manzini;
2011

Abstract

The maximum principle is one of the most important properties of solutions of partial differential equations. Its numerical analog, the discrete maximum principle (DMP), is one of the most difficult properties to achieve in numerical methods, especially when the computational mesh is distorted to adapt and conform to the physical domain or the problem coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to numerical instabilities such as oscillations and to unphysical solutions such as heat flow from a cold material to a hot one. In this work, we investigate sufficient conditions to ensure the monotonicity of the mimetic finite difference (MFD) method on two- and three-dimensional meshes. These conditions result in a set of general inequalities for the elements of the mass matrix of every mesh element. Efficient solutions are devised for meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally refined elements as those used in the AMR methodology. On simplicial meshes, it turns out that the MFD method coincides with the mixed-hybrid finite element methods based on the low-order Raviart-Thomas vector space. Thus, in this case we recover the well-established conventional angle conditions of such approximations. Instead, in the other cases a suitable design of the MFD method allows us to formulate a monotone discretization for which the existence of a DMP can be theoretically proved. Moreover, on meshes of parallelograms we establish a connection with a similar monotonicity condition proposed for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm the effectiveness of the considered monotonicity conditions.
2011
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Mimetic finite differences
Discrete maximum principle
Monotone matrix
M-matrix
Monotone scheme
Mesh refinement
File in questo prodotto:
File Dimensione Formato  
prod_285937-doc_96399.pdf

solo utenti autorizzati

Descrizione: Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 59
social impact