Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of smallmolecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. © 2013 Bentham Science Publishers.

Modulation of epigenetic targets for anticancer therapy: Clinicopathological relevance, structural data and drug discovery perspectives

2013

Abstract

Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of smallmolecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. © 2013 Bentham Science Publishers.
2013
Acetyltransferases
Anticancer therapy
Crystallography
Deacetylases
Demethylases
DNA methyltransferases
Drug design
Epigenetics
Histone post-translational modifications
Protein methyltransferases
Small-molecule inhibitors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact