The deregulation of microRNAs expression and activity is frequently observed in a wide variety of human pathologies including cancer. Accordingly, growing evidence indicates that the targeting of microRNAs biogenesis and pathways is emerging as a central tool for the development of novel RNA-based drugs and therapies to defeat diseases in humans. In this review we describe the various strategies that can be used to target microRNAs and specific RNA-binding proteins, involved in the regulation of their production, localization, stability and activity, in human cancer and cardiovascular diseases. We also focus on the efforts that are currently made to enhance the potency and stability of these therapeutic agents and their delivery to modulate in vivo microRNAs pathways. Finally, we present structural data on proteins that belong to the microRNA pathway for small molecules-based target therapy design. © 2013 Bentham Science Publishers.

MicroRNA biogenesis pathway as a therapeutic target for human disease and cancer

2013

Abstract

The deregulation of microRNAs expression and activity is frequently observed in a wide variety of human pathologies including cancer. Accordingly, growing evidence indicates that the targeting of microRNAs biogenesis and pathways is emerging as a central tool for the development of novel RNA-based drugs and therapies to defeat diseases in humans. In this review we describe the various strategies that can be used to target microRNAs and specific RNA-binding proteins, involved in the regulation of their production, localization, stability and activity, in human cancer and cardiovascular diseases. We also focus on the efforts that are currently made to enhance the potency and stability of these therapeutic agents and their delivery to modulate in vivo microRNAs pathways. Finally, we present structural data on proteins that belong to the microRNA pathway for small molecules-based target therapy design. © 2013 Bentham Science Publishers.
2013
Argonaute proteins
Crystallography
Dicer
Drosha
Exportin-5
MicroRNA
NMR
RNA-based drugs and therapies
Small molecules design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact