Hydrogen storage in composite materials is a feasible way to overcome the main drawbacks of the metal hydride systems. In the present paper, we report on the hydrogenation properties of three polydimethylsiloxane (PDMS)-palladium composite samples with different content of metallic fraction (5, 15, 50 in wt.%). Hydrogenation tests in different conditions of temperature and pressure were performed using a Sievert's type apparatus, while the microstructure of the samples was characterised by means of scanning electron microscopy observations and X-ray diffraction measurements. Results show that the hydrogen storage capacity is inversely proportional to the metallic content in the composite samples. Copyright © 2014 Inderscience Enterprises Ltd.

Kinetic behaviour of a metal-polymer composite suitable for hydrogen storage applications

Carotenuto G
2014

Abstract

Hydrogen storage in composite materials is a feasible way to overcome the main drawbacks of the metal hydride systems. In the present paper, we report on the hydrogenation properties of three polydimethylsiloxane (PDMS)-palladium composite samples with different content of metallic fraction (5, 15, 50 in wt.%). Hydrogenation tests in different conditions of temperature and pressure were performed using a Sievert's type apparatus, while the microstructure of the samples was characterised by means of scanning electron microscopy observations and X-ray diffraction measurements. Results show that the hydrogen storage capacity is inversely proportional to the metallic content in the composite samples. Copyright © 2014 Inderscience Enterprises Ltd.
2014
HRSEM
Hydrogen storage
Metal-polymer composites
Pd-nanoparticles
XRD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact