The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder. For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice. The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.
Finite volume formulation of thermal lattice Boltzmann method
Succi Sauro
2014
Abstract
The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder. For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice. The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


