The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder. For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice. The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.

Finite volume formulation of thermal lattice Boltzmann method

Succi Sauro
2014

Abstract

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder. For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice. The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
Backward-facing step
Double distribution function approach
Finite volume
Flow over a circular cylinder
Poiseuille flow
Thermal lattice Boltzmann models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 24
social impact