The Mw D 6Ð3 L'Aquila earthquake on 6 April 2009 produced a mainshock that caused significant changes in the hydrogeology of the Gran Sasso carbonate fractured aquifer: (i) the sudden disappearance at the time of the mainshock of some springs located exactly along the surface trace of the Paganica normal fault (PF); (ii) an immediate increase in the discharge of the Gran Sasso highway tunnel drainages and of other springs and (iii) a progressive increase of the water table elevation at the boundary of the Gran Sasso aquifer during the following months. Using the data collected since the 1990s that include aftershock monitoring as well as data regarding spring discharge, water table elevations, turbidity and rainfall events, a conceptual model of the earthquake's consequences on the Gran Sasso aquifer is proposed herein. In this model that excludes the contribution of seasonal recharge, the short-term hydrologic effects registered immediately after the mainshock are determined to have been caused by a pore pressure increase related to aquifer deformation. Mid-term effects observed in the months following the mainshock suggest that there was a change in groundwater hydrodynamics. Supplementary groundwater that flows towards aquifer boundaries and springs in discharge areas reflects a possible increase in hydraulic conductivity in the recharge area, nearby the earthquake fault zone. This increase can be attributed to fracture clearing and/or dilatancy. Simulations by numerical modelling, related to pore pressure and permeability changes with time, show results in accordance with observed field data, supporting the conceptual model and confirming the processes that influenced the answer of the Gran Sasso aquifer to the L'Aquila earthquake.
IMPACT OF THE APRIL 6, 2009 L'AQUILA EARTHQUAKE ON GROUNDWATER FLOW IN THE GRAN SASSO CARBONATE AQUIFER, CENTRAL ITALY.
M PETITTA;
2010
Abstract
The Mw D 6Ð3 L'Aquila earthquake on 6 April 2009 produced a mainshock that caused significant changes in the hydrogeology of the Gran Sasso carbonate fractured aquifer: (i) the sudden disappearance at the time of the mainshock of some springs located exactly along the surface trace of the Paganica normal fault (PF); (ii) an immediate increase in the discharge of the Gran Sasso highway tunnel drainages and of other springs and (iii) a progressive increase of the water table elevation at the boundary of the Gran Sasso aquifer during the following months. Using the data collected since the 1990s that include aftershock monitoring as well as data regarding spring discharge, water table elevations, turbidity and rainfall events, a conceptual model of the earthquake's consequences on the Gran Sasso aquifer is proposed herein. In this model that excludes the contribution of seasonal recharge, the short-term hydrologic effects registered immediately after the mainshock are determined to have been caused by a pore pressure increase related to aquifer deformation. Mid-term effects observed in the months following the mainshock suggest that there was a change in groundwater hydrodynamics. Supplementary groundwater that flows towards aquifer boundaries and springs in discharge areas reflects a possible increase in hydraulic conductivity in the recharge area, nearby the earthquake fault zone. This increase can be attributed to fracture clearing and/or dilatancy. Simulations by numerical modelling, related to pore pressure and permeability changes with time, show results in accordance with observed field data, supporting the conceptual model and confirming the processes that influenced the answer of the Gran Sasso aquifer to the L'Aquila earthquake.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.