The present work deals with the development of a prototype of a hydrophone for deep-sea acoustic detection. The base sensitive element is a single mode fibre laser, realized within an optically pumped erbium-doped fibre. It was obtained by inducing an index modulation within the fibre core by illuminating it with ultra-violet coherent light through a phase-mask grating; in this way a couple of Bragg reflectors delimiting an optical cavity were realized. The emission wavelength depends on the cavity length and on the Bragg gratings’ optical characteristics. The environmental conditions, in terms of temperature and static and dynamic pressure, modify these geometrical factors and optical parameters, inducing a wavelength shift of the optical signal. Fibre laser sensors were characterized both optically and acoustically within a closed tub in the laboratory, using a Mach–Zender interferometer and an electronic lock-in system allowing the transformation of the wavelength shift into amplitude variations, in order to greatly increase the sensitivity. The high sensitivity makes these sensors very suitable for a wide range of deep-sea acoustic applications, including geological surveys, marine mammal surveys and overall as acoustic sensors in the high energy cosmic neutrino underwater telescopes.

Development of an erbium-doped fiber laser as a deep sea hydrophone

R Falciai;
2006

Abstract

The present work deals with the development of a prototype of a hydrophone for deep-sea acoustic detection. The base sensitive element is a single mode fibre laser, realized within an optically pumped erbium-doped fibre. It was obtained by inducing an index modulation within the fibre core by illuminating it with ultra-violet coherent light through a phase-mask grating; in this way a couple of Bragg reflectors delimiting an optical cavity were realized. The emission wavelength depends on the cavity length and on the Bragg gratings’ optical characteristics. The environmental conditions, in terms of temperature and static and dynamic pressure, modify these geometrical factors and optical parameters, inducing a wavelength shift of the optical signal. Fibre laser sensors were characterized both optically and acoustically within a closed tub in the laboratory, using a Mach–Zender interferometer and an electronic lock-in system allowing the transformation of the wavelength shift into amplitude variations, in order to greatly increase the sensitivity. The high sensitivity makes these sensors very suitable for a wide range of deep-sea acoustic applications, including geological surveys, marine mammal surveys and overall as acoustic sensors in the high energy cosmic neutrino underwater telescopes.
2006
Istituto di Fisica Applicata - IFAC
fibre laser
hydrophone
fibre laser sensor
fibre optics
optical fibre sensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/22489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact