The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Neel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.
Small-cluster renormalization group in Ising and Blume-Emery-Griffiths models with ferromagnetic, antiferromagnetic, and quenched disordered magnetic interactions
F Antenucci;A Crisanti;L Leuzzi
2014
Abstract
The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Neel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.File | Dimensione | Formato | |
---|---|---|---|
prod_287682-doc_104395.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Dimensione
763.22 kB
Formato
Adobe PDF
|
763.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.