• Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. • In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mM NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissuespecific accumulation of tannins and flavonoids. • Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na + and Cl – for osmotic djustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis . Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. Lentiscus, and appeared to be related to leaf oxidative damage. • Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.

Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis L. and Pistacia lentiscus L.

G Agati;M L Traversi;
2006

Abstract

• Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. • In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mM NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissuespecific accumulation of tannins and flavonoids. • Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na + and Cl – for osmotic djustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis . Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. Lentiscus, and appeared to be related to leaf oxidative damage. • Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.
2006
Istituto di Fisica Applicata - IFAC
leaf optics
fluorescence
plant stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/22495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact