In this paper we investigate the ability of some recently introduced discrete kinetic models of vehicular traffic to catch, in their large time behavior, typical features of theoretical fundamental diagrams. Specifically, we address the so-called "spatially homogeneous problem" and, in the representative case of an exploratory model, we study the qualitative properties of its solutions for a generic number of discrete microscopic states. This includes, in particular, asymptotic trends and equilibria, whence fundamental diagrams originate.

Fundamental diagrams for kinetic equations of traffic flow

Tosin Andrea
2014

Abstract

In this paper we investigate the ability of some recently introduced discrete kinetic models of vehicular traffic to catch, in their large time behavior, typical features of theoretical fundamental diagrams. Specifically, we address the so-called "spatially homogeneous problem" and, in the representative case of an exploratory model, we study the qualitative properties of its solutions for a generic number of discrete microscopic states. This includes, in particular, asymptotic trends and equilibria, whence fundamental diagrams originate.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
Asymptotic trends
Discrete kinetic models
Fundamental diagrams
Stochastic games
Traffic flow
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/224984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact