Solutions of initial-boundary value problems for systems of conservation laws depend on the underlying viscous mechanism, namely different viscosity operators lead to different limit solutions. Standard numerical schemes for approximating conservation laws do not take into account this fact and converge to solutions that are not necessarily physically relevant. We design numerical schemes that incorporate explicit information about the underlying viscosity mechanism and approximate the physically relevant solution. Numerical experiments illustrating the robust performance of these schemes are presented.

Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws

L V Spinolo
2015

Abstract

Solutions of initial-boundary value problems for systems of conservation laws depend on the underlying viscous mechanism, namely different viscosity operators lead to different limit solutions. Standard numerical schemes for approximating conservation laws do not take into account this fact and converge to solutions that are not necessarily physically relevant. We design numerical schemes that incorporate explicit information about the underlying viscosity mechanism and approximate the physically relevant solution. Numerical experiments illustrating the robust performance of these schemes are presented.
2015
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Conservation laws
initial-boundary value problems
numerical schemes
File in questo prodotto:
File Dimensione Formato  
prod_287817-doc_152423.pdf

accesso aperto

Descrizione: Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws
Tipologia: Versione Editoriale (PDF)
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri
prod_287817-doc_164017.pdf

solo utenti autorizzati

Descrizione: Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws
Tipologia: Versione Editoriale (PDF)
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/225064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
social impact