We discuss the application of virtual elements to linear elasticity problems, for both the compressible and the nearly incompressible case. Virtual elements are very close to mimetic finite differences (see, for linear elasticity, [L. Beirão da Veiga, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 231-250]) and in particular to higher order mimetic finite differences. As such, they share the good features of being able to represent in an exact way certain physical properties (conservation, incompressibility, etc.) and of being applicable in very general geometries. The advantage of virtual elements is the ductility that easily allows high order accuracy and high order continuity.
Virtual elements for linear elasticity problems
L Beirao Da Veiga;F Brezzi;LD Marini
2013
Abstract
We discuss the application of virtual elements to linear elasticity problems, for both the compressible and the nearly incompressible case. Virtual elements are very close to mimetic finite differences (see, for linear elasticity, [L. Beirão da Veiga, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 231-250]) and in particular to higher order mimetic finite differences. As such, they share the good features of being able to represent in an exact way certain physical properties (conservation, incompressibility, etc.) and of being applicable in very general geometries. The advantage of virtual elements is the ductility that easily allows high order accuracy and high order continuity.File | Dimensione | Formato | |
---|---|---|---|
prod_293549-doc_84276.pdf
solo utenti autorizzati
Descrizione: Virtual Elements for Linear Elasticity Problems
Dimensione
288.64 kB
Formato
Adobe PDF
|
288.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.