The electrochemical behaviour in aprotic solvent of the complexes {M[bis-(2-hydroxy-l-naphthylideneimine-3-propyl)amine]}, where M = Mn(II), Co(II), Fe(II), Ni(II) and Cu(II) is reported. The complexes were prepared and characterized by elemental analysis, infrared and visible spectroscopy and magnetic susceptibility measurements. In addition the reactivity towards dioxygen of the Mn(II), Fe(II) and Co(II) derivatives was investigated, mainly by cyclic voltammetry and gas-volumetric uptake measurements. The results indicate that the Co(II) complexes are able to add dioxygen reversibly, while Mn(II) and Fe(II) compounds undergo an irreversible oxygenation process. The pathway of the dioxygenation processes is tentatively interpreted on the basis of the electrochemical responses. The results confirm that the location of the oxidation potential allows one to predict whether a compound is able to react with dioxygen, but it is not sufficient to predict whether the dioxygenation reaction proceeds reversibly. © 1984.
Five-coordinated metal complexes of bis(2-hydroxy-1-naphthylideneimine-3-propyl)amine and their reactivity towards dioxygen. Part I. An electrochemical investigation on manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) complexes
Pinzino Calogero;
1984
Abstract
The electrochemical behaviour in aprotic solvent of the complexes {M[bis-(2-hydroxy-l-naphthylideneimine-3-propyl)amine]}, where M = Mn(II), Co(II), Fe(II), Ni(II) and Cu(II) is reported. The complexes were prepared and characterized by elemental analysis, infrared and visible spectroscopy and magnetic susceptibility measurements. In addition the reactivity towards dioxygen of the Mn(II), Fe(II) and Co(II) derivatives was investigated, mainly by cyclic voltammetry and gas-volumetric uptake measurements. The results indicate that the Co(II) complexes are able to add dioxygen reversibly, while Mn(II) and Fe(II) compounds undergo an irreversible oxygenation process. The pathway of the dioxygenation processes is tentatively interpreted on the basis of the electrochemical responses. The results confirm that the location of the oxidation potential allows one to predict whether a compound is able to react with dioxygen, but it is not sufficient to predict whether the dioxygenation reaction proceeds reversibly. © 1984.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


