The combination of optical concentration, spatial spectral splitting and the use of multiple cells of suitable bandgap, could provide a path for high PV conversion efficiency without requiring the use of monolithically integrated multi junction solar cells. We propose a dispersive point focus single element concentrator and spectral splitting optics coupled with multiple cells employing Cu(InxGa1-x)Se2 cells for the mid wavelengths region. The optical element is designed, taking advantage of the dispersion characteristics of the employed material, to concentrate and provide spatial spectral splitting. The component can be realized injection molding and be mass produced at low cost.
Single element point focus spectral splitting concentrator with CIGS multiple bandgap solar cells
Stefancich Marco;Rampino Stefano;
2013
Abstract
The combination of optical concentration, spatial spectral splitting and the use of multiple cells of suitable bandgap, could provide a path for high PV conversion efficiency without requiring the use of monolithically integrated multi junction solar cells. We propose a dispersive point focus single element concentrator and spectral splitting optics coupled with multiple cells employing Cu(InxGa1-x)Se2 cells for the mid wavelengths region. The optical element is designed, taking advantage of the dispersion characteristics of the employed material, to concentrate and provide spatial spectral splitting. The component can be realized injection molding and be mass produced at low cost.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.