We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the "cell fluid." We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.

Conservation laws in cancer modeling

C Sinisgalli
2014

Abstract

We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the "cell fluid." We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.
2014
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
978-1-4939-0457-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/226506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact