We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.
Quantum Langevin model for nonequilibrium condensation
Carusotto Iacopo
2014
Abstract
We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_287423-doc_108401.pdf
solo utenti autorizzati
Descrizione: Quantum Langevin model for nonequilibrium condensation
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


