We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.

Quantum Langevin model for nonequilibrium condensation

Carusotto Iacopo
2014

Abstract

We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.
2014
Istituto Nazionale di Ottica - INO
Bose-Einstein condensation
semiconductor microcavities
thermal equilibrium
noise
oscillator
File in questo prodotto:
File Dimensione Formato  
prod_287423-doc_108401.pdf

solo utenti autorizzati

Descrizione: Quantum Langevin model for nonequilibrium condensation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/226511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact