Plant virus genomes cross the barrier of the host cell wall and move to neighboring cells either in the form of nucleoprotein complex or encapsidated into virions. Virus transport is facilitated by virus-encoded movement proteins (MP), which are different from one another in number, size, sequence, and in the strategy used to overcome the size exclusion limit (SEL) of plasmodesmata (PD). 1 A group of them forms tubules inside the lumen of highly modified PDs upon removal of the desmotubule. To date the molecular mechanism(s) and the host factors involved in the assembly of MP tubules as well as the mechanistic aspects of virus particle transport throughout them remain substantially unknown. In a recent study, we showed that Cauliflower mosaic virus (CaMV) MP traffics in the endocytic pathway with the help of three tyrosine-sorting signals, which are not required to target MP to the plasma membrane but are essential for tubule formation. 2 This evidence unravels a previously unknown connection between the plant endosomal system and tubule-mediated virus movement that is here supported by demonstration of hindrance of tubule assembly upon Brefeldin A (BFA) treatment. We discuss the implications of our data on the mechanisms of viral transport through tubules and draw parallels with plant mechanisms of polarized growth.

Interference of brefeldin A in viral movement protein tubules assembly

Carluccio AV;Stavolone L
2014

Abstract

Plant virus genomes cross the barrier of the host cell wall and move to neighboring cells either in the form of nucleoprotein complex or encapsidated into virions. Virus transport is facilitated by virus-encoded movement proteins (MP), which are different from one another in number, size, sequence, and in the strategy used to overcome the size exclusion limit (SEL) of plasmodesmata (PD). 1 A group of them forms tubules inside the lumen of highly modified PDs upon removal of the desmotubule. To date the molecular mechanism(s) and the host factors involved in the assembly of MP tubules as well as the mechanistic aspects of virus particle transport throughout them remain substantially unknown. In a recent study, we showed that Cauliflower mosaic virus (CaMV) MP traffics in the endocytic pathway with the help of three tyrosine-sorting signals, which are not required to target MP to the plasma membrane but are essential for tubule formation. 2 This evidence unravels a previously unknown connection between the plant endosomal system and tubule-mediated virus movement that is here supported by demonstration of hindrance of tubule assembly upon Brefeldin A (BFA) treatment. We discuss the implications of our data on the mechanisms of viral transport through tubules and draw parallels with plant mechanisms of polarized growth.
2014
VIROLOGIA VEGETALE
Istituto per la Protezione Sostenibile delle Piante - IPSP
Brefeldin A
Cauliflower mosaic virus
Endomembranes
Movement protein
Tubules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/226562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact