In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions.

Unsupervised Linguistically-Driven Reliable Dependency Parses Detection and Self-Training for Adaptation to the Biomedical Domain

Felice Dell'Orletta;Giulia Venturi;Simonetta Montemagni
2013

Abstract

In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Felice Dell'Orletta it
dc.authority.people Giulia Venturi it
dc.authority.people Simonetta Montemagni it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 16:30:56 -
dc.date.available 2024/02/19 16:30:56 -
dc.date.issued 2013 -
dc.description.abstracteng In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions. -
dc.description.affiliations ILC - Istituto di linguistica computazionale "Antonio Zampolli" -
dc.description.allpeople Felice Dell'Orletta; Giulia Venturi; Simonetta Montemagni -
dc.description.allpeopleoriginal Felice Dell'Orletta, Giulia Venturi, Simonetta Montemagni -
dc.description.fulltext none en
dc.description.numberofauthors 3 -
dc.identifier.isbn 978-1-937284-55-8 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/227044 -
dc.identifier.url http://www.aclweb.org/anthology/W13-1906 -
dc.language.iso eng -
dc.relation.conferencedate 8-9 agosto 2013 -
dc.relation.conferencename 12th workshop on "Biomedical Natural Language Processing" (BioNLP) -
dc.relation.conferenceplace Sofia (Bulgaria) -
dc.relation.firstpage 45 -
dc.relation.lastpage 53 -
dc.subject.keywords Self-training -
dc.subject.keywords Domain Adaptation -
dc.subject.keywords Biomedical Texts -
dc.subject.singlekeyword Self-training *
dc.subject.singlekeyword Domain Adaptation *
dc.subject.singlekeyword Biomedical Texts *
dc.title Unsupervised Linguistically-Driven Reliable Dependency Parses Detection and Self-Training for Adaptation to the Biomedical Domain en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 285773 -
iris.orcid.lastModifiedDate 2024/03/01 12:36:26 *
iris.orcid.lastModifiedMillisecond 1709292986103 *
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact