In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions.
Unsupervised Linguistically-Driven Reliable Dependency Parses Detection and Self-Training for Adaptation to the Biomedical Domain
Felice Dell'Orletta;Giulia Venturi;Simonetta Montemagni
2013
Abstract
In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | - |
| dc.authority.people | Felice Dell'Orletta | it |
| dc.authority.people | Giulia Venturi | it |
| dc.authority.people | Simonetta Montemagni | it |
| dc.collection.id.s | 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d | * |
| dc.collection.name | 04.01 Contributo in Atti di convegno | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.date.accessioned | 2024/02/19 16:30:56 | - |
| dc.date.available | 2024/02/19 16:30:56 | - |
| dc.date.issued | 2013 | - |
| dc.description.abstracteng | In this paper, a new self-training method for domain adaptation is illustrated, where the selection of reliable parses is carried out by an unsupervised linguistically-driven algorithm, ULISSE. The method has been tested on biomedical texts with results showing a significant improvement with respect to considered baselines, which demonstrates its ability to capture both reliability of parses and domain-specificity of linguistic constructions. | - |
| dc.description.affiliations | ILC - Istituto di linguistica computazionale "Antonio Zampolli" | - |
| dc.description.allpeople | Felice Dell'Orletta; Giulia Venturi; Simonetta Montemagni | - |
| dc.description.allpeopleoriginal | Felice Dell'Orletta, Giulia Venturi, Simonetta Montemagni | - |
| dc.description.fulltext | none | en |
| dc.description.numberofauthors | 3 | - |
| dc.identifier.isbn | 978-1-937284-55-8 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/227044 | - |
| dc.identifier.url | http://www.aclweb.org/anthology/W13-1906 | - |
| dc.language.iso | eng | - |
| dc.relation.conferencedate | 8-9 agosto 2013 | - |
| dc.relation.conferencename | 12th workshop on "Biomedical Natural Language Processing" (BioNLP) | - |
| dc.relation.conferenceplace | Sofia (Bulgaria) | - |
| dc.relation.firstpage | 45 | - |
| dc.relation.lastpage | 53 | - |
| dc.subject.keywords | Self-training | - |
| dc.subject.keywords | Domain Adaptation | - |
| dc.subject.keywords | Biomedical Texts | - |
| dc.subject.singlekeyword | Self-training | * |
| dc.subject.singlekeyword | Domain Adaptation | * |
| dc.subject.singlekeyword | Biomedical Texts | * |
| dc.title | Unsupervised Linguistically-Driven Reliable Dependency Parses Detection and Self-Training for Adaptation to the Biomedical Domain | en |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | - |
| dc.type.full | 04 Contributo in convegno::04.01 Contributo in Atti di convegno | it |
| dc.type.miur | 273 | - |
| dc.type.referee | Sì, ma tipo non specificato | - |
| dc.ugov.descaux1 | 285773 | - |
| iris.orcid.lastModifiedDate | 2024/03/01 12:36:26 | * |
| iris.orcid.lastModifiedMillisecond | 1709292986103 | * |
| iris.sitodocente.maxattempts | 1 | - |
| Appare nelle tipologie: | 04.01 Contributo in Atti di convegno | |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


