Pulse shielding in Laser-Induced Breakdown of saline water on hydrodynamic time scales is experimentally characterized. Pairs of pulses from a Nd:YAG laser are focused into saline water with a controlled time delay between them. The Laser-Induced Breakdown produced by the first pulse creates a cavitation bubble that later collapses generating a plume of bubbles that evolves on hydrodynamic time scales. When the second pulse arrives, the light is scattered by this plume with a consequent reduction in the intensity at the focal spot resulting in a lower breakdown efficiency of this pulse. By means of acoustic measurements, we determine the breakdown energy threshold for the first pulse and characterize the shielding of the second pulse as a function of the salinity of the solution, the energy of the pulse, and the inter-pulse interval. A model for the blocking process that takes into account both linear and nonlinear absorption along the path is developed which satisfactorily explains the observations. (C) 2014 AIP Publishing LLC.

Shielding of optical pulses on hydrodynamical time scales in laser-induced breakdown of saline water

Marino F;Roati G;
2014

Abstract

Pulse shielding in Laser-Induced Breakdown of saline water on hydrodynamic time scales is experimentally characterized. Pairs of pulses from a Nd:YAG laser are focused into saline water with a controlled time delay between them. The Laser-Induced Breakdown produced by the first pulse creates a cavitation bubble that later collapses generating a plume of bubbles that evolves on hydrodynamic time scales. When the second pulse arrives, the light is scattered by this plume with a consequent reduction in the intensity at the focal spot resulting in a lower breakdown efficiency of this pulse. By means of acoustic measurements, we determine the breakdown energy threshold for the first pulse and characterize the shielding of the second pulse as a function of the salinity of the solution, the energy of the pulse, and the inter-pulse interval. A model for the blocking process that takes into account both linear and nonlinear absorption along the path is developed which satisfactorily explains the observations. (C) 2014 AIP Publishing LLC.
2014
Istituto Nazionale di Ottica - INO
variational approach
ablation
dynamics plasma
wavelength
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact