We study the quantum state of phonons propagating on top of a fluid of light coherently generated in a planar microcavity device by a quasiresonant incident laser beam. In the steady state under a monochromatic pump, because of the finite radiative lifetime of photons, a sizable incoherent population of low-frequency phonons is predicted to appear. Their mean occupation number differs from a Planck distribution and is independent of the photon lifetime. When the photon fluid is subjected to a sudden change of its parameters, additional phonon pairs are created in the fluid with remarkable two-mode squeezing and entanglement properties. Schemes to assess the nonseparability of the phonon state from measurements of the correlation functions of the emitted light are discussed.
Spectrum and entanglement of phonons in quantum fluids of light
Carusotto Iacopo;
2014
Abstract
We study the quantum state of phonons propagating on top of a fluid of light coherently generated in a planar microcavity device by a quasiresonant incident laser beam. In the steady state under a monochromatic pump, because of the finite radiative lifetime of photons, a sizable incoherent population of low-frequency phonons is predicted to appear. Their mean occupation number differs from a Planck distribution and is independent of the photon lifetime. When the photon fluid is subjected to a sudden change of its parameters, additional phonon pairs are created in the fluid with remarkable two-mode squeezing and entanglement properties. Schemes to assess the nonseparability of the phonon state from measurements of the correlation functions of the emitted light are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.