Seeded free electron lasers theoretically have the intensity, tunability, and resolution required for multiphoton spectroscopy of atomic and molecular species. Using the seeded free electron laser FERMI and a novel detection scheme, we have revealed the two-photon excitation spectra of dipole-forbidden doubly excited states in helium. The spectral profiles of the lowest (-1,0)+1 Se1 and (0,1)0 De1 resonances display energy shifts in the meV range that depend on the pulse intensity. The results are explained by an effective two-level model based on calculated Rabi frequencies and decay rates.

High Resolution Multiphoton Spectroscopy by a Tunable Free-Electron-Laser Light

M Coreno;M Devetta;C Grazioli;
2014

Abstract

Seeded free electron lasers theoretically have the intensity, tunability, and resolution required for multiphoton spectroscopy of atomic and molecular species. Using the seeded free electron laser FERMI and a novel detection scheme, we have revealed the two-photon excitation spectra of dipole-forbidden doubly excited states in helium. The spectral profiles of the lowest (-1,0)+1 Se1 and (0,1)0 De1 resonances display energy shifts in the meV range that depend on the pulse intensity. The results are explained by an effective two-level model based on calculated Rabi frequencies and decay rates.
2014
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact