We demonstrate a superconducting photon-number-resolving detector capable of resolving up to twelve photons at telecommunication wavelengths. It is based on a series array of twelve superconducting NbN nanowire elements, each connected in parallel with an integrated resistor. The photon-induced voltage signals from the twelve elements are summed up into a single readout pulse with a height proportional to the detected photon number. Thirteen distinct output levels corresponding to the detection of n = 0-12 photons are observed experimentally. A detailed analysis of the linearity and of the excess noise shows the potential of scaling to an even larger dynamic range. © 2014 Optical Society of America.

Superconducting series nanowire detector counting up to twelve photons

Mattioli F;Gaggero A;Leoni R;
2014

Abstract

We demonstrate a superconducting photon-number-resolving detector capable of resolving up to twelve photons at telecommunication wavelengths. It is based on a series array of twelve superconducting NbN nanowire elements, each connected in parallel with an integrated resistor. The photon-induced voltage signals from the twelve elements are summed up into a single readout pulse with a height proportional to the detected photon number. Thirteen distinct output levels corresponding to the detection of n = 0-12 photons are observed experimentally. A detailed analysis of the linearity and of the excess noise shows the potential of scaling to an even larger dynamic range. © 2014 Optical Society of America.
2014
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact