In this paper, a new strategy to cope with the identification of nonlinear models of industrial processes, when a limited number of experimental data is available, is proposed. The approach is intended to improve the generalization capabilities of the model and it is based on the integration of bootstrap resampling, noise injection and neural model stacking. A number of algorithms to stack the first level neural models are also compared. The method proposed has been applied to develop a Soft Sensor for the estimation of the Freezing Point of Kerosene in an atmospheric distillation unit (Topping) working in a refinery in Sicily, Italy. The improvements obtained thanks to the strategy proposed, with respect to a classical neural model, are shown in the paper. © 2010 Elsevier Ltd.

Soft Sensor design for a Topping process in the case of small datasets

Napoli G
Primo
Conceptualization
;
2011

Abstract

In this paper, a new strategy to cope with the identification of nonlinear models of industrial processes, when a limited number of experimental data is available, is proposed. The approach is intended to improve the generalization capabilities of the model and it is based on the integration of bootstrap resampling, noise injection and neural model stacking. A number of algorithms to stack the first level neural models are also compared. The method proposed has been applied to develop a Soft Sensor for the estimation of the Freezing Point of Kerosene in an atmospheric distillation unit (Topping) working in a refinery in Sicily, Italy. The improvements obtained thanks to the strategy proposed, with respect to a classical neural model, are shown in the paper. © 2010 Elsevier Ltd.
2011
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Bootstrap resampling
Dis
Model stacking
Neural models
Nonlinear systems identification
Soft Sensors
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0098135410003704-main.pdf

solo utenti autorizzati

Descrizione: In this paper, a new strategy to cope with the identification of nonlinear models of industrial processes, when a limited number of experimental data is available, is proposed. The approach is intended to improve the generalization capabilities of the model and it is based on the integration of bootstrap resampling, noise injection and neural model stacking. A number of algorithms to stack the first level neural models are also compared. The method proposed has been applied to develop a Soft Sensor for the estimation of the Freezing Point of Kerosene in an atmospheric distillation unit (Topping) working in a refinery in Sicily, Italy. The improvements obtained thanks to the strategy proposed, with respect to a classical neural model, are shown in the paper.
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact