Superconductivity at the LaTiO3/SrTiO3 interface is studied by low temperature and high magnetic field measurements as a function of a back-gate voltage. We show that it is intimately related to the appearance of a low density (a few 1012 cm-2) of high mobility carriers, in addition to low mobility ones always present in the system. These carriers form superconducting puddles coupled by a metallic two-dimensional electron gas, as revealed by the analysis of the phase transition driven by a perpendicular magnetic field. Two critical fields are evidenced, and a quantitative comparison with a recent theoretical model is made.

Magnetic field induced transition in superconducting LaTiO 3/SrTiO3 interfaces

M. Grilli;S. Caprara;
2013

Abstract

Superconductivity at the LaTiO3/SrTiO3 interface is studied by low temperature and high magnetic field measurements as a function of a back-gate voltage. We show that it is intimately related to the appearance of a low density (a few 1012 cm-2) of high mobility carriers, in addition to low mobility ones always present in the system. These carriers form superconducting puddles coupled by a metallic two-dimensional electron gas, as revealed by the analysis of the phase transition driven by a perpendicular magnetic field. Two critical fields are evidenced, and a quantitative comparison with a recent theoretical model is made.
2013
Istituto dei Sistemi Complessi - ISC
Superconductivity
File in questo prodotto:
File Dimensione Formato  
prod_287873-doc_82628.pdf

accesso aperto

Descrizione: Magnetic field induced transition in superconducting LaTiO 3/SrTiO3 interfaces
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact