A 3D Domain-Decomposition (DD) strategy has been developed to deal with violent wave-ship interactions involving water-on-deck and slamming occurrence. It couples a linear potential flow seakeeping solver with a Navier-Stokes method. The latter is applied in an inner domain where slamming, water-on-deck, and free surface fragmentation may occur, involving important flow nonlinearities. The field solver combines an approximated projection method with a level set technique for the free surface evolution. A hybrid strategy, combining the Eulerian level set concept to Lagrangian markers, is used to enforce more accurately the body boundary condition in case of high local curvatures. Main features of the weak and the strong coupling algorithms are described with special focus on the boundary conditions for the inner solver. Two ways of estimating the nonlinear loads by the Navier-Stokes method are investigated, on the basis of an extrapolation technique and an interpolation marching cubes algorithm, respectively. The DD is applied for the case of a freely floating patrol ship in head sea regular waves and compared against water-on-deck experiments in terms of flow evolution, body motions, and pressure on the hull. Improvement of the solver efficiency and accuracy is suggested. © 2013 John Wiley & Sons, Ltd.

3D domain decomposition for violent wave-ship interactions

Greco M;Colicchio G;Lugni C;
2013

Abstract

A 3D Domain-Decomposition (DD) strategy has been developed to deal with violent wave-ship interactions involving water-on-deck and slamming occurrence. It couples a linear potential flow seakeeping solver with a Navier-Stokes method. The latter is applied in an inner domain where slamming, water-on-deck, and free surface fragmentation may occur, involving important flow nonlinearities. The field solver combines an approximated projection method with a level set technique for the free surface evolution. A hybrid strategy, combining the Eulerian level set concept to Lagrangian markers, is used to enforce more accurately the body boundary condition in case of high local curvatures. Main features of the weak and the strong coupling algorithms are described with special focus on the boundary conditions for the inner solver. Two ways of estimating the nonlinear loads by the Navier-Stokes method are investigated, on the basis of an extrapolation technique and an interpolation marching cubes algorithm, respectively. The DD is applied for the case of a freely floating patrol ship in head sea regular waves and compared against water-on-deck experiments in terms of flow evolution, body motions, and pressure on the hull. Improvement of the solver efficiency and accuracy is suggested. © 2013 John Wiley & Sons, Ltd.
2013
Istituto di iNgegneria del Mare - INM (ex INSEAN)
3D domain decomposition
Hybrid technique
Level set
Linear potential theory
Navier-Stokes solver
Violent wave-body interactions
Weak/strong coupling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact