We present a detailed investigation of the valence of manganese sites at the surface of colossal magnetoresistance La0.7Sr0.3MnO3 (LSMO) thin films by x-ray absorption spectroscopy (XAS). The XAS Mn L-edge spectra of epitaxial LSMO films usually show a peak or shoulder at 640 eV. Differences in the intensity of this feature are commonly attributed to slight changes in the Mn3+/Mn4+ ratio or the crystal field strength. By comparison of different XAS spectra of LSMO thin films with the known multiplet structure of Mn2+ in a cubic crystal field, we assign this 640-eV feature to Mn2+ ions. XAS with increased surface sensitivity, combined with photon energy-dependent photoelectron spectroscopy measurements of the Mn(3s) exchange splitting, show that the Mn2+ species are mainly located at the surface. The Mn2+ scenario indicates significant modification of the LSMO surface with respect to the bulk properties that should be taken into account in all the charge and spin tunneling and injection experiments.

Evidence for Mn2+ ions at surfaces of La0.7Sr0.3MnO3 thin films

I Bergenti;V Dediu;C Taliani
2005

Abstract

We present a detailed investigation of the valence of manganese sites at the surface of colossal magnetoresistance La0.7Sr0.3MnO3 (LSMO) thin films by x-ray absorption spectroscopy (XAS). The XAS Mn L-edge spectra of epitaxial LSMO films usually show a peak or shoulder at 640 eV. Differences in the intensity of this feature are commonly attributed to slight changes in the Mn3+/Mn4+ ratio or the crystal field strength. By comparison of different XAS spectra of LSMO thin films with the known multiplet structure of Mn2+ in a cubic crystal field, we assign this 640-eV feature to Mn2+ ions. XAS with increased surface sensitivity, combined with photon energy-dependent photoelectron spectroscopy measurements of the Mn(3s) exchange splitting, show that the Mn2+ species are mainly located at the surface. The Mn2+ scenario indicates significant modification of the LSMO surface with respect to the bulk properties that should be taken into account in all the charge and spin tunneling and injection experiments.
2005
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
HALF-METALLIC FERROMAGNET
X-RAY ABSORPTION
SPIN INJECTION
SEMICONDUCTOR
RESISTANCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/2284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact