Dimerization of phenolic compounds can potentially enhance their biological (antioxidant) activity. We present here the selective oxidative dimerization of several flavonolignans from Silybum marianum seed extract, namely, silybin A (1a), silybin B (1b), silychristin (3), and silydianin (4) catalyzed by a laccase from Trametes versicolor. Selective benzylation of C-7 OH group of both silybins ensured the priority of the dimerization reaction, avoiding thus polymerization. C-C homodimers connected via E-rings of silybin A and B and silydianin dimers were successfully isolated after respective debenzylation. On the contrary, dimerization of 7-O-benzyl silychristin afforded a complex, inseparable mixture of the products. All isolated flavonolignan dimers exhibited significantly improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity compared to their monomers and, therefore, seem to be promising for further biological studies. (C) 2014 Elsevier B.V. All rights reserved.

Enzymatic oxidative dimerization of silymarin flavonolignans

Gavezzotti Paolo;Fronza Giovanni;Riva Sergio;
2014

Abstract

Dimerization of phenolic compounds can potentially enhance their biological (antioxidant) activity. We present here the selective oxidative dimerization of several flavonolignans from Silybum marianum seed extract, namely, silybin A (1a), silybin B (1b), silychristin (3), and silydianin (4) catalyzed by a laccase from Trametes versicolor. Selective benzylation of C-7 OH group of both silybins ensured the priority of the dimerization reaction, avoiding thus polymerization. C-C homodimers connected via E-rings of silybin A and B and silydianin dimers were successfully isolated after respective debenzylation. On the contrary, dimerization of 7-O-benzyl silychristin afforded a complex, inseparable mixture of the products. All isolated flavonolignan dimers exhibited significantly improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity compared to their monomers and, therefore, seem to be promising for further biological studies. (C) 2014 Elsevier B.V. All rights reserved.
2014
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
Silybin dimers
Silydianin dimer
Silymarin
Laccase
Trametes versicolor laccase
DPPH assay
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact