Well-balanced schemes were introduced to numerically enforce consistency with longtime behavior of the underlying continuous PDE. When applied to linear kinetic models, like the Goldstein-Taylor system, this construction generates discretizations which are inconsistent with the hydrodynamic stiff limit (despite it captures diffusive limits quite well). A numerical hybridization, taking advantage of both time-splitting (TS) and well-balanced (WB) approaches is proposed in order to fix this defect: numerical results show that resulting composite schemes improve rendering of macroscopic fluxes while keeping a correct hydrodynamic stiff limit.

A well-balanced scheme able to cope with hydrodynamic limits for linear kinetic models

Laurent Gosse
2015

Abstract

Well-balanced schemes were introduced to numerically enforce consistency with longtime behavior of the underlying continuous PDE. When applied to linear kinetic models, like the Goldstein-Taylor system, this construction generates discretizations which are inconsistent with the hydrodynamic stiff limit (despite it captures diffusive limits quite well). A numerical hybridization, taking advantage of both time-splitting (TS) and well-balanced (WB) approaches is proposed in order to fix this defect: numerical results show that resulting composite schemes improve rendering of macroscopic fluxes while keeping a correct hydrodynamic stiff limit.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
Discrete kinetic model; Hydrodynamic limit; Position-dependent equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact