Platelet-shaped copper sulfide nanocrystals (NCs) with tunable Cu stoichiometry were prepared from Cu-rich covellite (Cu1.1S) nanoplates through their reaction with a Cu(I) complex ([Cu(CH3CN)(4)]PF6) at room temperature. Starting from a common sample, by this approach it is possible to access a range of compositions in these NCs, varying from Cu1.1S up to Cu2S, each characterized by a different optical response: from the metallic covellite, with a high density of free carriers and strong localized surface plasmon resonance (LSPR), up to Cu2S NCs with no LSPR. In all these NCs the valency of Cu in the lattice stays always close to +1, while the average -1 valency of S in covellite gradually evolves to -2 with increasing Cu content; i.e., sulfur is progressively reduced. The addition of copper to the starting covellite NCs is similar to the intercalation of metal species in layered transition metal dichalcogenides (TMDCs); i.e., the chalcogen-chalcogen bonds holding the layers are progressively broken to make room for the intercalated metals, while their overall anion sublattice does not change much. However, differently from the TMDCs, the intercalation in covellite NCs is sustained by a change in the redox state of the anion framework. Furthermore, the amount of Cu incorporated in the NCs upon reaction is associated with the formation of an equimolar amount of Cu(II) species in solution. Therefore, the reaction scheme can be written as: Cu1.1S + 2 gamma Cu(I) -> Cu1.1+gamma S + gamma Cu(II).

Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions

Sangregorio Claudio;
2013

Abstract

Platelet-shaped copper sulfide nanocrystals (NCs) with tunable Cu stoichiometry were prepared from Cu-rich covellite (Cu1.1S) nanoplates through their reaction with a Cu(I) complex ([Cu(CH3CN)(4)]PF6) at room temperature. Starting from a common sample, by this approach it is possible to access a range of compositions in these NCs, varying from Cu1.1S up to Cu2S, each characterized by a different optical response: from the metallic covellite, with a high density of free carriers and strong localized surface plasmon resonance (LSPR), up to Cu2S NCs with no LSPR. In all these NCs the valency of Cu in the lattice stays always close to +1, while the average -1 valency of S in covellite gradually evolves to -2 with increasing Cu content; i.e., sulfur is progressively reduced. The addition of copper to the starting covellite NCs is similar to the intercalation of metal species in layered transition metal dichalcogenides (TMDCs); i.e., the chalcogen-chalcogen bonds holding the layers are progressively broken to make room for the intercalated metals, while their overall anion sublattice does not change much. However, differently from the TMDCs, the intercalation in covellite NCs is sustained by a change in the redox state of the anion framework. Furthermore, the amount of Cu incorporated in the NCs upon reaction is associated with the formation of an equimolar amount of Cu(II) species in solution. Therefore, the reaction scheme can be written as: Cu1.1S + 2 gamma Cu(I) -> Cu1.1+gamma S + gamma Cu(II).
2013
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
SURFACE-PLASMON RESONANCES; X-RAY PHOTOELECTRON; DOPED QUANTUM DOTS; CATION-EXCHANGE; SEMICONDUCTOR NANOCRYSTALS; ELECTRON-DIFFRACTION; OXIDE NANOCRYSTALS; PHASE-TRANSITION; ABSORPTION; NANORODS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 444
  • ???jsp.display-item.citation.isi??? 434
social impact