Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and ?, ?-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a 'phylogenetic' sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been 'primitive' membrane constituents. By using an optical microscopy, we have observed that polyprenyl phosphates containing 15 to 30 C-atoms form giant vesicles in water in a wide pH range. The addition of 10 % molar of some polyprenols to polyprenyl phosphate vesicles have been shown to reduce the water permeability of membranes even more efficiently than the equimolecular addition of cholesterol. A 'prebiotic' synthesis of C10 and C15 prenols from C5 monoprenols was achieved in the presence of a montmorillonite clay. Hypothetical pathway from C1 or C2 units to 'primitive' membranes and that from 'primitive' membranes to archaeal lipids are presented.

Search for the Most 'primitive' Membranes and Their Reinforcers: A Review of the Polyprenyl Phosphates Theory

Pozzi G;
2014

Abstract

Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and ?, ?-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a 'phylogenetic' sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been 'primitive' membrane constituents. By using an optical microscopy, we have observed that polyprenyl phosphates containing 15 to 30 C-atoms form giant vesicles in water in a wide pH range. The addition of 10 % molar of some polyprenols to polyprenyl phosphate vesicles have been shown to reduce the water permeability of membranes even more efficiently than the equimolecular addition of cholesterol. A 'prebiotic' synthesis of C10 and C15 prenols from C5 monoprenols was achieved in the presence of a montmorillonite clay. Hypothetical pathway from C1 or C2 units to 'primitive' membranes and that from 'primitive' membranes to archaeal lipids are presented.
2014
Archaea
Cholesterol
Early formation and evolution of membranes
Isoprenoids
Membrane reinforcement
Polyprenols
Polyprenyl phosphates
Terpenoids
Vesicles
File in questo prodotto:
File Dimensione Formato  
prod_288094-doc_90475.pdf

solo utenti autorizzati

Descrizione: Primitive Biomembranes Review
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact