We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

Dynamical maximum entropy approach to flocking

Andrea Cavagna;Irene Giardina;Francesco Ginelli;
2014

Abstract

We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.
2014
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
File Dimensione Formato  
prod_288114-doc_82734.pdf

accesso aperto

Descrizione: Dynamical maximum entropy approach to flocking
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 246.69 kB
Formato Adobe PDF
246.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 54
social impact