For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.
Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator
P Agostinetti;G Serianni;
2011
Abstract
For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


