This paper describes the detailed design of the Quench Protection Circuits (QPC) for the superconducting Toroidal Field (TF) and Poloidal Field (PF) magnets of the Satellite Tokamak JT-60SA, which will be installed in Naka, Japan [1]. The nominal currents to be interrupted and the maximum reapplied voltages are 25.7 kA and 2.8 kV for the TF QPCs and 20 kA and 5 kV for PF QPCs. The innovative solution proposed in the QPC design is based on a Hybrid Circuit Breaker (CB) composed of a mechanical Bypass Switch for conducting the continuous current, in parallel to a static CB for current interruption. The main choices of the final design are presented and discussed, either to confirm or to update and complete the study performed at the conceptual design level.

Final Design of the Quench Protection Circuits for the JT-60SA Superconducting Magnets

E Gaio;
2011

Abstract

This paper describes the detailed design of the Quench Protection Circuits (QPC) for the superconducting Toroidal Field (TF) and Poloidal Field (PF) magnets of the Satellite Tokamak JT-60SA, which will be installed in Naka, Japan [1]. The nominal currents to be interrupted and the maximum reapplied voltages are 25.7 kA and 2.8 kV for the TF QPCs and 20 kA and 5 kV for PF QPCs. The innovative solution proposed in the QPC design is based on a Hybrid Circuit Breaker (CB) composed of a mechanical Bypass Switch for conducting the continuous current, in parallel to a static CB for current interruption. The main choices of the final design are presented and discussed, either to confirm or to update and complete the study performed at the conceptual design level.
2011
Istituto gas ionizzati - IGI - Sede Padova
978-1-4577-0669-1
dc circuit breaker
hybrid mechanical-static
IGCT
Quench Protection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/229174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact