Mercury-supported, self-assembled monolayers (SAMs) of the sole dioleoylphosphatidylcholine (DOPC) and of a raft-forming mixture of DOPC, cholesterol (Chol) and palmitoylsphingomyelin (PSM) of (59:26:15) mol% composition, were investigated by electrochemical impedance spectroscopy (EIS), both in the absence and in the presence of the monosialoganglioside GM1. The impedance spectra of these four SAMs were fitted by a series of parallel combinations of a resistance and a capacitance (RC meshes) and displayed on plots of ?Z? against -?Z?, where Z? and Z? are the in-phase and quadrature components of the impedance and ? is the angular frequency. A comparison among these different impedance spectra points to the formation of GM1-rich gel phase microdomains within the lipid rafts of the DOPC/Chol/PSM mixture, thanks to the unique molecular-level smooth support provided by mercury, which allows EIS to detect the protruding gel phase microdomains by averaging them over a macroscopically large area.

The GM1 Ganglioside Forms GM1-Rich Gel Phase Microdomains within Lipid Rafts

Becucci Lucia;Vizza Francesco;
2014

Abstract

Mercury-supported, self-assembled monolayers (SAMs) of the sole dioleoylphosphatidylcholine (DOPC) and of a raft-forming mixture of DOPC, cholesterol (Chol) and palmitoylsphingomyelin (PSM) of (59:26:15) mol% composition, were investigated by electrochemical impedance spectroscopy (EIS), both in the absence and in the presence of the monosialoganglioside GM1. The impedance spectra of these four SAMs were fitted by a series of parallel combinations of a resistance and a capacitance (RC meshes) and displayed on plots of ?Z? against -?Z?, where Z? and Z? are the in-phase and quadrature components of the impedance and ? is the angular frequency. A comparison among these different impedance spectra points to the formation of GM1-rich gel phase microdomains within the lipid rafts of the DOPC/Chol/PSM mixture, thanks to the unique molecular-level smooth support provided by mercury, which allows EIS to detect the protruding gel phase microdomains by averaging them over a macroscopically large area.
2014
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
lipid rafts
gel phase microdomains
electrochemical impedance spectroscopy
cholera toxin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/229208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact