As opposed to a conventional optical resonator, an off-axis-aligned cavity is able to transmit without distortion radiation modulated at a frequency even far above the cavity bandpass. This allows us to implement a simple spectroscopic technique that combines the cavity path-length enhancement of integrated cavity output spectroscopy (ICOS) and the noise reduction associated with radio-frequency modulation (FM). An FM-ICOS spectrometer is demonstrated for the first time using a two-tone modulation technique. The performance is compared to the traditional ICOS by examining the acetylene absorption at 1543.77 nm. A signal-to-noise ratio improvement by a factor 3.5 is found with our proof-of-concept setup. Larger improvements are expected in a more optimized setup. (C) 2013 Optical Society of America
Two-tone frequency-modulation spectroscopy in off-axis cavity
Malara P;Gagliardi G;De Natale P
2013
Abstract
As opposed to a conventional optical resonator, an off-axis-aligned cavity is able to transmit without distortion radiation modulated at a frequency even far above the cavity bandpass. This allows us to implement a simple spectroscopic technique that combines the cavity path-length enhancement of integrated cavity output spectroscopy (ICOS) and the noise reduction associated with radio-frequency modulation (FM). An FM-ICOS spectrometer is demonstrated for the first time using a two-tone modulation technique. The performance is compared to the traditional ICOS by examining the acetylene absorption at 1543.77 nm. A signal-to-noise ratio improvement by a factor 3.5 is found with our proof-of-concept setup. Larger improvements are expected in a more optimized setup. (C) 2013 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.