An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors' transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders' gains, Shannon-Kotel'nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.

Neural Approximations of Analog Joint Source-Channel Coding

Mongelli Maurizio
2015

Abstract

An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors' transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders' gains, Shannon-Kotel'nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.
2015
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Joint source-channel coding
neural networks
Shannon-Kotel'nikov mapping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/229419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact