It is now accepted that a conformational change of the cellular prion protein (PrP(C)) generates the prion, the infectious agent responsible for lethal neurodegenerative disorders, named transmissible spongiform encephalopathies, or prion diseases. The mechanisms of prion-associated neurodegeneration are still obscure, as is the cell role of PrP(C), although increasing evidence attributes to PrP(C) important functions in cell survival. Such a behavioral dichotomy thus enables the prion protein to switch from a benign role under normal conditions, to the execution of neurons during disease. By reviewing data from models of prion disease and PrP(C)-null paradigms, which suggest a relation between the prion protein and Ca(2+) homeostasis, here we discuss the possibility that Ca(2+) is the factor behind the enigma of the pathophysiology of PrP(C). Ca(2+) features in almost all processes of cell signaling, and may thus tell us much about a protein that pivots between health and disease.

From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein?

2009

Abstract

It is now accepted that a conformational change of the cellular prion protein (PrP(C)) generates the prion, the infectious agent responsible for lethal neurodegenerative disorders, named transmissible spongiform encephalopathies, or prion diseases. The mechanisms of prion-associated neurodegeneration are still obscure, as is the cell role of PrP(C), although increasing evidence attributes to PrP(C) important functions in cell survival. Such a behavioral dichotomy thus enables the prion protein to switch from a benign role under normal conditions, to the execution of neurons during disease. By reviewing data from models of prion disease and PrP(C)-null paradigms, which suggest a relation between the prion protein and Ca(2+) homeostasis, here we discuss the possibility that Ca(2+) is the factor behind the enigma of the pathophysiology of PrP(C). Ca(2+) features in almost all processes of cell signaling, and may thus tell us much about a protein that pivots between health and disease.
2009
Istituto di Neuroscienze - IN -
PrP
Prion
Ca2+ homeostasis
Neurodegeneration
Synaptic functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/22960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact