Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid-liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that "bulk'' water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes-Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to "worm-hole'' structure.

The dynamic crossover in water does not require bulk water

2012

Abstract

Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid-liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that "bulk'' water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes-Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to "worm-hole'' structure.
2012
Istituto per i Processi Chimico-Fisici - IPCF
STOKES-EINSTEIN RELATION
PROTEIN HYDRATION WATER
LOW-FREQUENCY SPECTRUM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/229668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact