Four novel gem-silanediol-containing organic dyes featuring a highly conjugated backbone have been synthesized in order to investigate their potential as active materials for photovoltaics. After spectroscopic characterization, the compounds showing the best light harvesting and electrochemical properties were applied as sensitizers in dye-sensitized solar cells (DSSCs). Interestingly, photovoltaic cells built using the new silanediol dyes showed low power conversion efficiencies (?), comparable to those obtained with silicon-based sensitizers having simple azobenzene moieties as the light-harvesting units. Such values are mostly due to unsatisfactory photocurrent densities; a computational study suggested that the latter can be justified considering the insufficient degree of charge transfer taking place during photoexcitation of the silicon-containing sensitizers, which is likely to make electron injection into the TiO2 layer less efficient.

Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solar cells

De Angelis Filippo;Mordini Alessandro;Peruzzini Maurizio;Reginato Gianna;Zani Lorenzo
2013

Abstract

Four novel gem-silanediol-containing organic dyes featuring a highly conjugated backbone have been synthesized in order to investigate their potential as active materials for photovoltaics. After spectroscopic characterization, the compounds showing the best light harvesting and electrochemical properties were applied as sensitizers in dye-sensitized solar cells (DSSCs). Interestingly, photovoltaic cells built using the new silanediol dyes showed low power conversion efficiencies (?), comparable to those obtained with silicon-based sensitizers having simple azobenzene moieties as the light-harvesting units. Such values are mostly due to unsatisfactory photocurrent densities; a computational study suggested that the latter can be justified considering the insufficient degree of charge transfer taking place during photoexcitation of the silicon-containing sensitizers, which is likely to make electron injection into the TiO2 layer less efficient.
2013
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Dye-sensitized solar cells; Organic sensitizer; gem-Silanediol; Cyclic voltammetry; TD-DFT calculations
File in questo prodotto:
File Dimensione Formato  
prod_192366-doc_41475.pdf

solo utenti autorizzati

Descrizione: Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solar cells
Dimensione 795.04 kB
Formato Adobe PDF
795.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/229860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact