In this article an algorithm is proposed to efficiently perform the uniform sampling of an iso-energy surface corresponding to a fixed potential energy U of a molecular system, and for calculating averages of certain quantities over microstates having this energy (microcanonical averages). The developed sampling technique is based upon the combination of a recently proposed method for performing constant potential energy molecular dynamics simulations [Rapallo, A. J Chem Phys 2004, 121, 4033] with well-established thermostatting techniques used in the framework of standard molecular dynamics simulations, such as the Andersen thermostat, and the Nose-Hoover chain thermostat. The proposed strategy leads to very accurate and drift-free potential energy conservation during the whole sampling process, and, very important, specially when dealing with high-dimensional or complicated potential functions, it does not require the calculation of the potential energy function hessian. The technique proved to be very reliable for sampling both low- and high-dimensional surfaces.
An algorithm for the uniform sampling of iso-energy surfaces and for the calculation of microcanonical averages
Rapallo A
2006
Abstract
In this article an algorithm is proposed to efficiently perform the uniform sampling of an iso-energy surface corresponding to a fixed potential energy U of a molecular system, and for calculating averages of certain quantities over microstates having this energy (microcanonical averages). The developed sampling technique is based upon the combination of a recently proposed method for performing constant potential energy molecular dynamics simulations [Rapallo, A. J Chem Phys 2004, 121, 4033] with well-established thermostatting techniques used in the framework of standard molecular dynamics simulations, such as the Andersen thermostat, and the Nose-Hoover chain thermostat. The proposed strategy leads to very accurate and drift-free potential energy conservation during the whole sampling process, and, very important, specially when dealing with high-dimensional or complicated potential functions, it does not require the calculation of the potential energy function hessian. The technique proved to be very reliable for sampling both low- and high-dimensional surfaces.File | Dimensione | Formato | |
---|---|---|---|
prod_54078-doc_23912.pdf
solo utenti autorizzati
Descrizione: An algorithm for the uniform sampling of iso-energy surfaces and for the calculation of microcanonical averages
Dimensione
542.87 kB
Formato
Adobe PDF
|
542.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.