In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect ofNO-donors. Unlike inMycobacteriumtuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seemto reduce the NOscavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species.

Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species

Coppola D;Giordano D;di Prisco G;Verde C
2013

Abstract

In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect ofNO-donors. Unlike inMycobacteriumtuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seemto reduce the NOscavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species.
2013
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/230178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact