Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(l-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4394-4405, 2014.

Bioinspired porous membranes containing polymer nanoparticles for wound healing

Ciardelli Gianluca
2014

Abstract

Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(l-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4394-4405, 2014.
2014
Istituto per i Processi Chimico-Fisici - IPCF
collagen
nanoparticles
plasma
porous membrane
wound healing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/230195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact