Strongly (001) oriented BiOCl nanoflakes have been prepared at room temperature by the controlled hydrolysis of bismuth chloride in the presence of acetylacetone. The nanoflakes thermally treated in air up to 600 °C have been studied by X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Composition, structure and morphology of the nanoflakes have been correlated to their electronic absorption and luminescence properties. Irrespective of the thermal treatments, the samples are characterized by transmittance higher than 98% in the near-infrared region. In the mildly annealed specimen (<= 200 °C), the absorption bands in the ultraviolet can be effectively exploited for the selective excitation of the blue (394 nm) and green (520 nm) photoluminescence, the latter being visible only for ? exc > 310 nm. Conversely, at higher temperature only the blue emission is observed which, on the basis of the observed trend, can be assigned to emitting centres located in the oxide sheet of the Bi-O-Cl stacks.
Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties
Armelao L;Bottaro G;
2012
Abstract
Strongly (001) oriented BiOCl nanoflakes have been prepared at room temperature by the controlled hydrolysis of bismuth chloride in the presence of acetylacetone. The nanoflakes thermally treated in air up to 600 °C have been studied by X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Composition, structure and morphology of the nanoflakes have been correlated to their electronic absorption and luminescence properties. Irrespective of the thermal treatments, the samples are characterized by transmittance higher than 98% in the near-infrared region. In the mildly annealed specimen (<= 200 °C), the absorption bands in the ultraviolet can be effectively exploited for the selective excitation of the blue (394 nm) and green (520 nm) photoluminescence, the latter being visible only for ? exc > 310 nm. Conversely, at higher temperature only the blue emission is observed which, on the basis of the observed trend, can be assigned to emitting centres located in the oxide sheet of the Bi-O-Cl stacks.File | Dimensione | Formato | |
---|---|---|---|
prod_196752-doc_42793.pdf
solo utenti autorizzati
Descrizione: Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.