Calculating the complex dielectric function for optical interband transitions we show that the two-dimensional crystals silicene and germanene possess the same low-frequency absorbance as graphene. It is determined by the Sommerfeld finestructure constant. Deviations occur for higher frequencies when the first interband transitions outside K or K' contribute. The low-frequency results are a consequence of the honeycomb geometry but do not depend on the group-IV atom, the sheet buckling, and the orbital hybridization. The two-dimensional crystals may be useful as absorption normals in silicon technology.
Infrared absorbance of silicene and germanene
Paola Gori;Olivia Pulci
2012
Abstract
Calculating the complex dielectric function for optical interband transitions we show that the two-dimensional crystals silicene and germanene possess the same low-frequency absorbance as graphene. It is determined by the Sommerfeld finestructure constant. Deviations occur for higher frequencies when the first interband transitions outside K or K' contribute. The low-frequency results are a consequence of the honeycomb geometry but do not depend on the group-IV atom, the sheet buckling, and the orbital hybridization. The two-dimensional crystals may be useful as absorption normals in silicon technology.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.