Four bacterial strains belonging to the genera Vibrio, Pseudoalteromonas and Photobacterium were isolated from the marine sponges Dysidea avara and Geodia cynodium. A Bacillus strain was isolated from Ircinia variabilis. A screening of molecules involved in quorum sensing (QS) was carried out by TLC-overlay and a new "plate T-streak" test. To analyze quorum quenching (QQ), a plate T-streak was performed with Chromobacterium violaceum. Strains of Vibrio isolated from both marine sponges and a strain of Photobacterium isolated from G. cynodium, activated QS bioreporters. A strain of Pseudoalteromonas isolated from D. avara showed QQ activity. Finally, it is reported that cyclic dipeptides isolated from strains of Vibrio sp. and Bacillus sp. (isolated from D. avara and I. variabilis, respectively) were involved in the QS mechanism. The simultaneous presence of bacteria that showed contrasting responses in bioassays for QS signal molecule synthesis in marine sponges could add an interesting dimension to the signalling interactions which may be happening in sponges.
Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals
Abbamondi GR;Iodice C;Tommonaro G
2014
Abstract
Four bacterial strains belonging to the genera Vibrio, Pseudoalteromonas and Photobacterium were isolated from the marine sponges Dysidea avara and Geodia cynodium. A Bacillus strain was isolated from Ircinia variabilis. A screening of molecules involved in quorum sensing (QS) was carried out by TLC-overlay and a new "plate T-streak" test. To analyze quorum quenching (QQ), a plate T-streak was performed with Chromobacterium violaceum. Strains of Vibrio isolated from both marine sponges and a strain of Photobacterium isolated from G. cynodium, activated QS bioreporters. A strain of Pseudoalteromonas isolated from D. avara showed QQ activity. Finally, it is reported that cyclic dipeptides isolated from strains of Vibrio sp. and Bacillus sp. (isolated from D. avara and I. variabilis, respectively) were involved in the QS mechanism. The simultaneous presence of bacteria that showed contrasting responses in bioassays for QS signal molecule synthesis in marine sponges could add an interesting dimension to the signalling interactions which may be happening in sponges.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.