Peptide nucleic acids (PNA) are very promising antisense agents, but their in vivo application is often hampered by their low bioavailability, mainly due to their limited uptake through cellular and nuclear membranes. However, PNA chemical synthesis easily allows modification with functional structures able to improve the intrinsically low permeability and great interest is arising in finding specific and efficient delivery protocols. Polymeric core-shell microspheres with anionic functional groups on the surface were tested for their ability to reversibly bind lysine modified PNA sequences, whose antisense activity against COX-2 mRNA was already demonstrated in murine macrophages.
Enhanced antisense effect of modified PNAs delivered through functional PMMA microspheres
SANTI SPARTACO;Tondelli Luisa;
2006
Abstract
Peptide nucleic acids (PNA) are very promising antisense agents, but their in vivo application is often hampered by their low bioavailability, mainly due to their limited uptake through cellular and nuclear membranes. However, PNA chemical synthesis easily allows modification with functional structures able to improve the intrinsically low permeability and great interest is arising in finding specific and efficient delivery protocols. Polymeric core-shell microspheres with anionic functional groups on the surface were tested for their ability to reversibly bind lysine modified PNA sequences, whose antisense activity against COX-2 mRNA was already demonstrated in murine macrophages.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.