ZnO-core/CoFe2O4-shell nanoparticles of 7.4 nm average size have been synthesized and their magnetic properties have been compared to those of CoO-core/CoFe2O4-shell nanoparticles with similar morphology. The coercive field values are much lower than those for CoO/CoFe2O4 nanoparticles (e.g., at 5 K: Hc = 7.8 kOe for ZnO/CoFe2O4; Hc = 27.8 kOe for CoO/CoFe2O4). The nature of the coercive field values is explained by a phenomenological model for the free energy of a non-magnetic core, or an antiferromagnetic core, encapsulated by a hard ferrimagnetic shell.
Origin of magnetic anisotropy in ZnO/CoFe2O4 and CoO/CoFe2O4 core/shell nanoparticle systems
Elisabetta Agostinelli;Dino Fiorani;
2012
Abstract
ZnO-core/CoFe2O4-shell nanoparticles of 7.4 nm average size have been synthesized and their magnetic properties have been compared to those of CoO-core/CoFe2O4-shell nanoparticles with similar morphology. The coercive field values are much lower than those for CoO/CoFe2O4 nanoparticles (e.g., at 5 K: Hc = 7.8 kOe for ZnO/CoFe2O4; Hc = 27.8 kOe for CoO/CoFe2O4). The nature of the coercive field values is explained by a phenomenological model for the free energy of a non-magnetic core, or an antiferromagnetic core, encapsulated by a hard ferrimagnetic shell.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.