We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF) model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ln N corrections. We then elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered, clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced by the mean field, plus subextensive bands of O(ln N) exponents taking finite values. We finally investigate the robustness of these results by studying a "2D" extension of the HMF model where each particle is endowed with 4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov equation, no chaos is present, while chaos exists and subsists for any finite system size.

Chaos in the Hamiltonian mean-field model

Antonio Politi;Alessandro Torcini
2011

Abstract

We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF) model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ln N corrections. We then elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered, clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced by the mean field, plus subextensive bands of O(ln N) exponents taking finite values. We finally investigate the robustness of these results by studying a "2D" extension of the HMF model where each particle is endowed with 4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov equation, no chaos is present, while chaos exists and subsists for any finite system size.
2011
Istituto dei Sistemi Complessi - ISC
LARGEST LYAPUNOV EXPONENT
PHASE-TRANSITION
INTERACTING OSCILLATORS
STATISTICAL-MECHANICS
SCALING LAW
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/231816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact