We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF) model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ln N corrections. We then elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered, clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced by the mean field, plus subextensive bands of O(ln N) exponents taking finite values. We finally investigate the robustness of these results by studying a "2D" extension of the HMF model where each particle is endowed with 4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov equation, no chaos is present, while chaos exists and subsists for any finite system size.
Chaos in the Hamiltonian mean-field model
Francesco Ginelli;Antonio Politi;Alessandro Torcini
2011
Abstract
We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF) model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ln N corrections. We then elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered, clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced by the mean field, plus subextensive bands of O(ln N) exponents taking finite values. We finally investigate the robustness of these results by studying a "2D" extension of the HMF model where each particle is endowed with 4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov equation, no chaos is present, while chaos exists and subsists for any finite system size.File | Dimensione | Formato | |
---|---|---|---|
prod_193361-doc_43505.pdf
solo utenti autorizzati
Descrizione: Chaos in the Hamiltonian ...
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.