We study the asymptotic properties of fracture strength distributions of disordered elastic media by a combination of renormalization group, extreme value theory, and numerical simulation. We investigate the validity of the "weakest-link hypothesis" in the presence of realistic long-ranged interactions in the random fuse model. Numerical simulations indicate that the fracture strength is well-described by the Duxbury-Leath-Beale (DLB) distribution which is shown to flow asymptotically to the Gumbel distribution. We explore the relation between the extreme value distributions and the DLB-type asymptotic distributions and show that the universal extreme value forms may not be appropriate to describe the nonuniversal low-strength tail.
Fracture Strength of Disordered Media: Universality, Interactions, and Tail Asymptotics
Zapperi S
2012
Abstract
We study the asymptotic properties of fracture strength distributions of disordered elastic media by a combination of renormalization group, extreme value theory, and numerical simulation. We investigate the validity of the "weakest-link hypothesis" in the presence of realistic long-ranged interactions in the random fuse model. Numerical simulations indicate that the fracture strength is well-described by the Duxbury-Leath-Beale (DLB) distribution which is shown to flow asymptotically to the Gumbel distribution. We explore the relation between the extreme value distributions and the DLB-type asymptotic distributions and show that the universal extreme value forms may not be appropriate to describe the nonuniversal low-strength tail.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_193399-doc_78414.pdf
solo utenti autorizzati
Descrizione: Fracture Strength of Disordered Media: Universality, Interactions, and Tail Asymptotics
Dimensione
450.29 kB
Formato
Adobe PDF
|
450.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


