Let n, a1, a2, . . . , ak be distinct positive integers. A finite Toeplitz graph Tn(a1, a2, . . . , ak) = (V, E) is a graph where V = {v0, v1, . . . , vn-1} and E = {vivj, for |i-j| ? {a1, a2, . . . , ak}}. In this paper, we first refine some previous results on the connectivity of finite Toeplitz graphs with k = 2, and then focus on Toeplitz graphs with k = 3, proving some results about their chromatic number.

On the chromatic number of Toeplitz graphs

Sara Nicoloso;
2014

Abstract

Let n, a1, a2, . . . , ak be distinct positive integers. A finite Toeplitz graph Tn(a1, a2, . . . , ak) = (V, E) is a graph where V = {v0, v1, . . . , vn-1} and E = {vivj, for |i-j| ? {a1, a2, . . . , ak}}. In this paper, we first refine some previous results on the connectivity of finite Toeplitz graphs with k = 2, and then focus on Toeplitz graphs with k = 3, proving some results about their chromatic number.
2014
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Toeplitz graphs
Connectivity
Coloring
Chromatic number
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/232100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact